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Abstract
In this study, we propose a multi-layered reconfigurable frequency selective surface (FSS) using water channels, which can 
be switched between the bandpass and bandstop states. Variation ratio in transmission between the bandpass and bandstop 
states is drastically improved by multi-layer dielectric slabs with water channels. We then fabricate the design, and the 
measured results in the X-band shows a good agreement with the simulation. The variation in transmission coefficients 
between the two states increases from 0.34 to 0.71 using the 5-layered dielectric slabs with water channels, which verifies 
the reconfigurability of the proposed FSS.
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1  Introduction

A frequency selective surface (FSS) is a periodic structure 
that transmits or reflects electromagnetic waves at a specific 
frequency. The typical FSS consists of passive elements and 
operates in a single, unchanged state at a fixed frequency 
band. The FSS can be used within radomes to obtain stealth 
functions [1, 2]. Recently, there have been many studies 
on the reconfigurable FSS to overcome the drawbacks of 
the FSS. For example, a reconfigurable FSS using various 
active elements, such as PIN diodes, varactor diodes, and 
micro-electro-mechanical systems (MEMS) to control the 
impedance of unit cells, has been extensively studied. The 
reconfigurable FSS with PIN diodes can change the trans-
mission frequency to either on or off state depending on the 

bias voltage, but only two transmission frequency variations 
according to the states are possible [3–6]. The FSS using 
varactor diodes can change various transmission frequen-
cies by changing the bias voltage, but it is difficult to apply 
to a high frequency band and require a high fabricating cost 
[7–11]. The FSS using MEMS is able to change the trans-
mission frequency with a low cost, low loss, high isolation, 
and fast switching, but it has a disadvantage of a narrow-
bandwidth and small variation of the transmission frequency 
[12–14]. We proposed a reconfigurable FSS using a single 
dielectric slab with water channels [15] and demonstrated 
that using the fully filled or unfilled state (i.e., bandpass or 
bandstop state) of the fluid channels can control the trans-
mission characteristics by changing the effective dielectric 
constants of the dielectric slabs. We have also shown that 
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water (εr = 66–57-j(26–33)) can be used as the fluid in chan-
nels, and the transmission characteristics are controlled by 
the diameter, spacing, and presence of the fluid in the chan-
nels. However, the single-layered reconfigurable FSS using 
fluidic channels could not make an appreciable variation in 
transmission coefficients between the two states (i.e., fre-
quency selectivity) at the target frequency.

In this study, we propose a multi-layered reconfigur-
able FSS using the water channels, which can be switched 
between the bandpass and bandstop states according to the 
filled or unfilled of the water channels. Variation ratio in 
transmission between the bandpass and bandstop states is 
drastically improved by stacking the dielectric slab with 

Fig. 1   Geometry of the multi-layered reconfigurable FSS. a Perspec-
tive view; b front view

Table 1   Optimized design parameters of the multi-layered reconfig-
urable FSS

S: Slab surface dimensions (mm2) 100 × 100
h1: Foam height (mm)/ε1 6.4/1.093
h2: Composite height (mm)/ε2 0.6/4.35
w: Tube diameter (mm) 4
t: Tube wall thickness (mm)/ε3 0.5/11.9
i: Interval of tubes (mm) 10
N: Number of layers From 1 to 5

Fig. 2   3-D model and the simulated results of the multi-layered 
reconfigurable FSS. a Simulation geometry (E-field: x-pol); b simula-
tion results
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water channels in parallel as the number of layers increases. 
We then fabricate the design, and the measured results in 
the X-band show a good agreement with the simulation. The 
variation in transmission coefficients between the two states 
increases from 0.34 to 0.71 using the 5-layered dielectric 
slabs with water channels, which verifies the reconfigurabil-
ity of the proposed FSS.

2 � Design and Fabrication

Figure 1 shows the multi-layered reconfigurable FSS, which 
consists of foams (Rohacell HF-71), composites (E-glass/
epoxy laminate), adhesives, and circular silicon tubes that 
can be filled with water. The effective permittivity of the 

structure can be optimized by varying the sizes and spacing 
of the tubes to achieve the reconfigurability of transmission 
coefficients in the X-band. Note that the impact of the water 
channels in the single layer on the permittivity and loss tan-
gent of the FSS is not sufficient to obtain the applicable 
variation ratio in transmission between the bandpass and 
bandstop states. Therefore, a multi-layered configuration for 
FSS is employed by stacking the single dielectric slab with 
water channels in parallel. We have optimized the design 
parameters of the proposed FSS, such as the diameter and 
spacing of the water channels, slab thickness, and number of 
layers, using a full-wave solver (CST MICROWAVE STU-
DIO (MWS) [16]). The detailed design parameters are listed 
in Table 1. Figure 2a shows the simulation geometry and 
conditions, such as mode of the incident wave, polarization 
of incident wave, and direction of E-field. The incident wave 
is a plane wave with linearly polarization in the x-direction. 
In Fig. 2b, the transmission coefficients between two states 
at a target frequency of 9.7 GHz are observed as the number 
of layers increases to examine the reconfigurability of the 
FSS. Even if the direction of E-field is rotated by 90°, the 
result is the same as that before the situation (see Fig. 3). 
To verify our results, we have conducted the simulations 
while increasing the conductivity of the water. When the 
conductivity is lower than 1 S/m, the transmission charac-
teristic does not change depending on the direction of the 
E-field. However, if it is higher than 1 S/m, the transmission 
characteristics change by the direction of the E-field. The 
conductivity of the fresh water is 0.01 S/m. Therefore, we 
obtained the same result even though the direction of the 
E-field is changed to the y-direction since the effective per-
mittivity of the structure is not changed and the conductivity 
of the water is too small to have an influence on the trans-
mission characteristic (see Fig. 4). Based on the optimized 

Fig. 3   3-D model and the simulated results of the multi-layered 
reconfigurable FSS. a Simulation geometry (E-field: y-pol); b simula-
tion results

Fig. 4   Transmission coefficient according to conductivity
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results, we fabricate the 5-layered FSS as shown in Fig. 5. 
The Styrofoam is carved to obtain the dielectric slabs with 
designed dimensions, and the square holes having a uniform 
spacing are extracted from the slabs. The channel made of 
silicon is then inserted in the square holes, which can be 
filled or unfilled with water. After the adhesive is applied to 
the styrofoam slabs, it is laminated with five layers. Finally, 
the composites are attached on the top and bottom of the 
laminated layers to achieve mechanical strength, harness, 
and stability.Fig. 5   Fabricated 5-layered reconfigurable FSS. a Perspective view; 

b front view

Fig. 6   Measurement setup

Fig. 7   Transmission coefficient of the multi-layered reconfigurable 
FSS (comparison of simulation and measurement)
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3 � Measurement

In order to verify the transmission characteristics of the 
fabricated structure, the free space measurement method 
is used as illustrated in Fig. 6. The measurement system 
consists of two horn antennas (ANT-SGH-90, gain: 22 dB, 
frequency: 8.2–12.4 GHz). One serves as a transmitting 
antenna and the other as a receiving antenna, and pyrami-
dal absorbers are placed outside the FSS to minimize inter-
ference due to the diffraction at the edge of the FSS, a zig, 
a stand, and a measuring equipment. The phase and ampli-
tude of the transmittance and reflectivity can be measured 
according to the geometry and material properties of the 
material under test (MUT) [17]. The distance between the 
X-band horn aperture and FSS surface is more than 1.8 m. 
This is because the far-field region for a radiator is defined 
as the region whose smallest radial distance is about larger 
than 2D2/λ [18] (D = 0.2 m, λ = 3 cm, at 10 GHz). In order 
to obtain accurate transmission characteristics through 
calibration, the network analyzer was capable of remov-
ing (= gating out) unwanted signals, such as diffractions 
or reflections, using the time-domain-gating. This requires 
the frequency response to be transformed from the fre-
quency domain to the time domain. In the time domain, 
undesired signals can be separated by their different 
delays, and hence be removed. The response is then trans-
formed back to the frequency domain. This calibration 
process ensures accurate results.

Figure 7 shows the measured and simulated results of 
the proposed FSS, and the measurement agree well with 
the simulations. The variation in transmission coefficients 
between the water filled and unfilled states significantly 
increases from 0.34 to 0.71 as number of layers increases 
from 1 to 5 as listed in Table 2. The rate of variation in 
transmission coefficients drastically improves as the num-
ber of layers increases, but it is saturated at about N = 5. 
Therefore, it is confirmed that the use of the multi-layered 
FSS with water channels can achieve the improved fre-
quency selectivity.

4 � Conclusion

In this study, we have designed, fabricated, and measured 
the multi-layered reconfigurable FSS using water channels 
at X-band. It has been demonstrated that the frequency selec-
tivity of the multi-layered structure is drastically improved 
with increasing number of layers. We then fabricate the opti-
mized design, and the variation in transmission coefficients 
between the two states increases from 0.34 to 0.71 using the 
5-layered dielectric slabs with water channels. The results 
verify the reconfigurability of the proposed FSS, which can 
be used in practical applications for reconfigurable FSS 
radomes.
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